Tagged: electricity

First nuclear reactor restarted – in Sendai – since Fukushima meltdown


Beginning of the end

A Japanese utility company said Tuesday it restarted a nuclear reactor, the first to do so since the Fukushima Daiichi meltdown in 2011.

“We hereby announce that as of today, Sendai Nuclear Power Unit No.1 has extracted control rods from the reactor and started up at 10:30 a.m.,” Kyushu Electric Power Co. said…”We see this startup as one of the important steps on restart process of the nuclear reactor.”

Japan has been working to reshape its energy sector since the 2011 meltdown of the Fukushima Daicchi nuclear reactor by focusing on energy efficiency, conservation and an increased use of cleaner-burning natural gas to help keep emissions in check…

Japan decommissioned 50 reactors after the 2011 meltdown, forcing it to re-examine its energy mix. Prior to the Fukushima disaster, nuclear had provided about 30 percent of Japan’s electricity, with renewable energy accounting for less than 3 percent, excluding hydropower. The country relied heavily in imports of liquefied natural gas in the wake of the disaster.

Kyushu in its statement said it would “never” allow a repeat of the 2011 disaster.

“We will continue to make sincerely an all-out effort to deal with the Nuclear Regulation Authority’s inspections, and carry out carefully remaining process, putting utmost priority to safety, with a sense of alertness more than ever,” it said.

A magnitude-9 earthquake and resulting tsunami 2011 led to a meltdown at the Fukushima facility, the worst nuclear catastrophe since Chernobyl disaster in Ukraine in 1986.

Not much of an article – deliberately. I’ll offer more in-depth discussion as the process of restart proceeds.

Japan hasn’t much of a choice at present. They have this capacity in place. The nation has been making do – which means spending a lot more to provide electricity than anyone has been accustomed to. The citizens of Japan are – unfortunately – used to going along with whatever decisions their politicians make. So, they’ve been absorbing the price hikes flowing from a kludged-together system of electricity production since the disaster.

Though a lifetime advocate for nuclear-generated power, I’ve had to change that position in the last year or two. China’s subsidized development of solar-generated electricity, wind-generated electricity [along with parallel development in northern Europe] has qualitatively changed the picture…for the better, I believe. Regardless of all the hollering, trade sanctions, whining from Congress, the result has been legitimate cuts in the cost of establishing alternative power generation both on a large-scale and home-based.

A win for nations and individuals. A win for the environment.

China expands ban on coal to suburbs


Click to enlarge12,000 died in the London smog of winter, 1952

China will expand its bans on coal burning to include suburban areas as well as city centers in efforts to tackle air pollution…

Detailing its clean coal action plan 2015-2020, the National Energy Administration (NEA) said it would promote centralized heating and power supply by natural gas and renewables, replacing scattered heat and power engines fueled by low quality coal.

The world’s biggest coal consumer will ban sale and burning of high-ash and high-sulphur coal in the worst affected regions including city clusters surrounding Beijing.

If you’ve been around as long as I have – and your memory still works – you recall the two-pronged solution to air pollution and smog has been this simple for decades.

After World War 2 the worst smog in the world belonged to London. Just like Beijing, the problem not only was coal-fired electricity generation; but, coal-fired home heating and cooking. It took a couple of decades; but, the last mile solution of getting natural gas to homes took care of the worst of it.

In Beijing and other polluted Chinese cities renewable energy sources are phasing out the portion of pollution coming from soft coal-fired electricity and, now, the government has dropped the other shoe and will end reliance on coal for home fires.

Under the action plan, coal-fired industrial boilers will all shift to burn natural gas or clean coal by 2020 in the Beijing-Tianjin-Hebei city clusters, Pearl River delta and Yangtze River delta area…

The government will offer subsidies for clean fuels

Natural gas will serve as the first level of carbon reduction as wind power and solar power continue the most dramatic expansion in the world.

Germany says “We don’t need no stinking Fossil Fuel!”

Sitting in a control center that helps ensure uninterrupted power for 82 million Germans, Gunter Scheibner is proving that renewable energy from the sun and wind can be just as reliable as fossil fuels.

Scheibner, in charge of keeping flows stable over 6,200 miles (9,976 kilometers) of transmission lines in eastern Germany, must keep power from solar and wind in harmony whether it’s sunny or overcast, windy or still. In doing so, he’s overcoming the great challenge for renewable energy: how to keep supplies steady when the weather doesn’t cooperate.

The system Scheibner manages has been so successful that Germany experiences just 15 minutes a year of outages, compared with 68 minutes in France and more than four hours in Poland. The model in Germany, the biggest economy in the world to rely so heavily on renewables, is being copied from California to China as wind and solar displace traditional fuels such as nuclear and coal…

Back in the GOUSA…The Edison Electric Institute, an industry group based in Washington, and incumbent producers claim that variable flows from renewables will destabilize the power grid.

Germany’s decade-long 120 billion-euro ($127.1 billion) investment binge to shift toward low-polluting energy forms is proving critics wrong. The country has raised its share of renewable power for electricity to about 28 percent, more than any source including lignite. In Scheibner’s region, it’s more than 40 percent…

Researchers studying the grid say that a much higher concentration of renewables — 50 percent or more — is possible. That will come at a cost. Germany needs to invest 6.1 billion euros a year in its grid by the end of this decade to cope with additional wind and solar farms, the German Institute for Economic Research in Berlin estimated.

“There’s a myth among opponents of renewable energy that you need 100 percent backup spinning all the time, and it’s utter nonsense,” said Michael Liebreich, founder of Bloomberg New Energy Finance. “Any grid needs flexibility. You can have a nuclear plant shut down by jellyfish or a coal plant closed because of a freeze and you can’t shovel in supplies fast enough.”

I hope you don’t mind me skipping the coal-centric whining in the middle. Watch the latest commercials from the Koch Brothers if you think you’re missing anything. They’re the core of patriotism and apple pie – so they say.

Reliable estimates on the cost of a more flexible grid are hard to come by. The U.S. grid could absorb as much as 80 percent of its supplies from renewables by 2050 while keeping investment in transmission within the historical range of $2 billion to $9 billion a year, a 2012 study led by the National Renewable Energy Laboratory showed.

In the U.K., the Imperial College Centre for Energy Policy & Technology suggested in 2006 that consumer power prices would rise 1 percent to fund the costs of adapting grids to intermittent power flows.

We face the same fight here in New Mexico as Arizona citizens. Power companies want folks installing solar panels on their homes to subsidize the cost of maintaining decrepit transmission systems. Meanwhile, our PNM plans on exporting their own solar-generated power over new transmission lines sited to deliver more electricity to California.

The Koch Brothers and our public utilities together generate enough bullshit to fertilize crops for half the world.

Electricity markets are rigged — consumers robbed!

For decades Wall Street financial engineers, teaming up with electric power producers, have gamed wholesale electricity auctions to earn bigger profits than either a regulated utility or a competitive market would yield. This month they made a major advance in their campaign to get rich by subtly draining your wallet. Yet every major news organization ignored this.

This latest development took place in New England, which already has America’s most expensive electricity. February’s electricity auction saw the annual cost to customers rise to $4 billion, up from about $3 billion in last year’s auction and less than $2 billion in the 2013 auction. That $4 billion figure would have been much higher but for a rule capping prices.

By the way, that $4 billion is not for the electricity, which costs extra. The $4 billion price tag is for capacity payments made to owners just for promising to run their power plants in 2018 and ’19.

If that sounds bizarre, it’s because it is. It is comparable to government taxing us to pay auto dealers to keep enough cars and trucks on their lots to satisfy expected future demand.

Half the states also have auctions that set the price of electricity for periods ranging from a year down to a few minutes. The other half still rely on traditional rate regulation, which has its own problems.

If there is abundant capacity to produce power at peak periods, such as hot summer afternoons, then prices will not rise much, if at all. But if there is barely enough power to meet demand, then prices rise significantly. And if capacity is just 1 percent less than demand, the wholesale price soars.

In these auctions every producer gets the top price even if most bid far less. These are known as clearing price auctions, in which the highest bidder sets the price for all suppliers…

Robert McCullough, an Oregon utility economist known for busting industry myths, says gaming of electricity markets is easy and lucrative, as long as regulators look the other way.

“With perfect competition, you always bid your marginal cost — as the economist Alfred Marshall was pointing more than a hundred years ago,” McCullough said. “However, when your market share is sufficiently high that you have the potential to set the market price, it is in your interest to raise your price above marginal cost, even though you will lose some of your market share” because one or more of your fleet of power plants will produce no electricity and thus not collect any money.

“This gets even better when you can buy someone else’s plant and shut it down,” McCullough added, because the reduced capacity means higher prices. Combined with the savings from not operating the shuttered plant, the result is much bigger profits.

Yes, these are the same schmucks who bankroll Republican agitprop about how free market capitalism guarantees our freedom. They leave out the part about buying politicians, buying off regulators with better-paying jobs as a reward when they’re through pimping the biz.

Then you get to double dippers like North Carolina’s governor Pat McCrory. He had a whole career working for Duke Energy. Left to become the gpvernor and, no doubt, will return to being officially on the payroll, once again, after he’s through directing that state’s legislative mediocrity into further kissing corporate butt.

Portland to generate electricity as part of its water system


LucidPipe installation — a turbine visible inside the pipe

There’s a lot of water constantly moving through the municipal pipelines of most major cities. While the water itself is already destined for various uses, why not harness its flow to produce hydroelectric power? Well, that’s exactly what Lucid Energy’s LucidPipe Power System does, and Portland, Oregon has just become the latest city to adopt it.

LucidPipe simply replaces a stretch of existing gravity-fed conventional pipeline, that’s used for transporting potable water. As the water flows through, it spins four 42-inch (107-cm) turbines, each one of which is hooked up to a generator on the outside of the pipe. The presence of the turbines reportedly doesn’t slow the water’s flow rate significantly, so there’s virtually no impact on pipeline efficiency.

The 200-kW Portland system was privately financed by Harbourton Alternative Energy, and its installation was completed late last December. It’s now undergoing reliability and efficiency testing, which includes checking that its sensors and smart control system are working properly. It’s scheduled to begin full capacity power generation by March.

Once up and running, it’s expected to generate an average of 1,100 megawatt hours of energy per year, which is enough to power approximately 150 homes. Over the next 20 years, it should also generate about US$2 million in energy sales to Portland General Electric, which Harbourton plans on sharing with the City of Portland and the Portland Water Bureau in order to offset operational costs. At the end of that period, the Portland Water Bureau will have the right to purchase the system outright, along with all the energy it produces.

Something cities like Albuquerque and Santa Fe, New Mexico, should consider. The rush of population growth and concurrent water system expansion took place right after World War 2. The mediocre piping installed now fails on a regular basis. Cripes, in Abq it’s weekly, even daily.

Of course, rebuilding infrastructure – especially with an eye on future requirements and additions – ain’t exactly part of being an American politician, nowadays.

Apple’s 25-year solar agreement will provide 130MW of clean energy


Apple’s new Campus 2 – under construction in Cupertino, California

Apple’s landmark solar power deal…is a long-term sustainable energy solution that should generate enough to power essentially all of the company’s California operations, including the upcoming “spaceship” Campus 2, by the end of 2016.

The green energy will be purchased from First Solar, Inc., through an $848 million agreement that will last for at least 25 years, making it the largest of its kind in the industry. First Solar will be providing electricity through its forthcoming 2,900-acre California Flats Solar Project in Monterey County…

In total, the solar plant will output 280 megawatts of electricity, 130 megawatts of which will be bought by Apple. The remaining 150-megawatt capacity will be sold to Pacific Gas & Electric under a separate long-term power purchase agreement…

Cook said…that Apple will buy enough electricity to power nearly 60,000 California homes. That’s enough to offset the electricity used by Apple’s upcoming Campus 2, as well as all 52 Apple retail stores in the Golden State, and its data center in Newark.

The Apple CEO also made it clear that climate change is a very serious issue for him and his company, which is why they are taking the lead on renewable and sustainable energy. Cook also noted to investors that the agreement makes sound financial sense as well, as the $848 million deal will result in “very significant savings” on the cost of energy.

So, the most valuable corporation in the world says it makes economic sense to move eletricity generation away from fossil fuel, away from coal and oil.

Congressional pimps and cowards, Republican conservatives and Blue Dog Democrats, bleat this isn’t possible.

Which side are you on?

Surprising complexity, insights into global effects of wood fuel burning

The harvesting of wood to meet the heating and cooking demands for billions of people worldwide has less of an impact on global forest loss and carbon dioxide emissions than previously believed, according to a new Yale-led study.

Writing in the journal Nature Climate Change, a team of researchers, including Prof. Robert Bailis of the Yale School of Forestry & Environmental Studies, concludes that only about 27 to 34 percent of wood fuel harvested worldwide would be considered “unsustainable.” According to the assessment, “sustainability” is based on whether or not annual harvesting exceeds incremental re-growth…

According to the authors, the findings point to the need for more nuanced, local-specific policies that address forest loss, climate change, and public health. They also suggest that existing carbon offset methodologies used to reduce carbon emissions likely overstate the CO2 emission reductions that can be achieved through the promotion of more efficient cookstove technologies.

The study identifies a set of “hotspots” where the majority of wood extraction exceeds sustainable yields. These hotspot regions — located mainly in South Asia and East Africa — support about 275 million people who are reliant on wood fuel.

However, in other regions, the authors say, much of the wood used for this traditional heating and cooking is actually the byproduct of deforestation driven by other factors, such as demand for agricultural land, which would have occurred anyway…

The results stand in contrast to a long-held assumption that the harvesting of wood fuels — which accounts for more than half of the wood harvested worldwide — is a major driver of deforestation and climate change…

Emissions from wood fuels account for about 1.9 to 2.3 percent of global emissions, the study says. The deployment of 100 million improved cookstoves could reduce this by 11 to 17 percent, said Bailis, who also studies the factors that influence the adoption of cleaner cookstoves in developing nations…

“We need to be able to understand where these different components of non-renewability are coming from in order to get a better sense of the positive impacts of putting stoves into peoples’ homes or promoting transitions to cooking with gas or electricity,” he said.

Economics rules. IMHO The first reason to choose wood-burning for fuel is cost. There is none. Yes, there is the cost of labor-time; but, the discussion covers a majority of rural families who are self-sustaining farmers…with little or no cash income.

Cost factors of electricity, natural gas, butagaz, etc. aren’t part of the equation. These folks generally can’t budget to buy fuel. Income-generation from local/regional small-scale manufacturing or more efficient, more productive methods of agriculture offering surplus to sell can remedy that core problem.

Vermont Yankee nuclear plant shuts down

Ellen Merkel says she gets “a little teary-eyed” when she thinks about the Vermont Yankee nuclear plant sending its last electrons to the regional power grid. She knows it will likely mean moving from her nice neighborhood in Vernon, where her husband works at the plant, to the South for a new job.

Frances Crowe, of Northampton, Massachusetts, says she’ll take some satisfaction that her anti-nuclear activism, which began before Vermont Yankee was built in the late 1960s, has had an impact. But she promised to continue to push for the highly radioactive spent fuel from the plant to be moved as soon as possible.

Those were among the reactions in the three-state region of Vermont, New Hampshire and Massachusetts as the plant finishes powering down and prepares to disconnect from the grid, most likely Monday…

Vermont Yankee, the state’s only nuclear reactor, employed more than 600 people when it announced it would close. The workforce will be cut in half after a round of layoffs and retirements Jan. 19. In 2016, the plant will see another big reduction as it prepares for a 30-year period during which time its radiation will cool. The plant likely won’t be dismantled until the 2040s or later. [My emphasis added – Eid]

Continue reading

Life with a Tesla — spent more on tires than electricity

David Noland always knew electric cars were cheap to run, but this is ridiculous. [OK – Back to first-person]

After I bought the first set of replacement tires for my 2013 Tesla Model S (at 26,000 miles), I crunched the numbers and came to a startling conclusion: I’ve spent substantially less per mile for my electric “fuel” than I have for my tires.

The tires weren’t cheap. The Michelin Primacy MXM4 all-season grand-touring tires set me back $250 apiece, plus mounting and balancing, for a total of $1,131.

Over 26,277 miles, that works out to 4.3 cents per mile. Pretty typical for a high-performance luxury sedan.

Over those same 26,277 miles, I used a total of 8,531 kilowatt-hours of electricity.

But, thanks to Tesla’s network of free high-power Superchargers, I didn’t pay for all of it.

As best as I can figure, I drove about 5,500 Supercharged miles during that time, including a 2,500-mile round-trip to Florida from my home in New York’s Hudson Valley.

That means I probably sucked up around 1,800 free kWh from the Superchargers.

So let’s say I paid for 6,700 kWh…My local utility, Central Hudson, charges about 14 cents per kWh. (Unfortunately, it offers no special night-time or electric car rates.)

So, let’s do the math: 6,700 kWh x 14 cents/kWh = $938…Divide by 26,277, and my total “fuel” cost per mile works out to a remarkable 3.6 cents per mile.

That’s 20 percent less than the per-mile cost of the tires that carried me on all those miles.

Yes, you can spend more – or less – on electricity or tires. Or tyres [I spent more years selling tyres than tires – few countries use American spelling for English].

RTFA for the fun and satisfaction of driving a car absent fossil fuel and the direct pollution that results. Tesla also takes advantage of the rate of torque transmitted directly to the road by a DC motor. It is a feeling that demands gobs of horsepower from anything that requires fire inside.

Thanks, Smartalix