Tagged: electricity

CO2 levels from generating electricity fall to lowest in 20 years

Carbon dioxide emissions from energy use in the first quarter of this year fell to their lowest level in the U.S. in 20 years, as demand shifted to natural gas-fired generation from coal-fired electricity due to record low gas prices, the energy department said.

Energy-related carbon emissions fell 8 percent from the same period a year ago to 1.134 billion metric tons according to the latest monthly energy review by the Energy Information Administration (EIA) – the energy department’s statistics arm.

In the U.S., the first quarter usually represents the time of year when greenhouse gas emissions are at their highest because of strong demand for fossil-fuel generated power for home heating…

Emissions from coal use fell sharply by 18 percent to 387 million tonnes in the January-March 2012 period – the lowest-first quarter tally since 1983 and the lowest for any quarter since April-June 1986.

The contribution of coal in U.S. energy use is likely to continue its demise, with plant owners and operators reporting to the EIA last month that they plan to retire 27 gigawatts of capacity, or 8.5 percent, at 175 coal-fired facilities between 2012 and 2016.

Looming federal carbon and mercury regulations being developed by the Environmental Protection Agency are also likely to force the retirement of more coal plants.

Couldn’t happen to a nicer bunch of greedy, polluting, extractive-industry, corporate barons.

As Robert Muller noted in his OP-Ed piece in the NY TIMES over the weekend, one of the simplest critical steps to take in reducing our political lemming march to the abyss of climate change – is to convert power generation from coal to natural gas. Up front, it reduces CO2 two-thirds from power plants.

About these ads

FDA approves a sensor you can swallow


You say you keep hearing Billy Idol tunes from your navel?

Taking a pill seems like the easiest thing in the world. Pill, glass of water and swallow, right? For many people, however, it isn’t that simple. For them, it’s very easy to take the incorrect dosage at the incorrect time. To help prevent this, Proteus Digital Health of Redwood City, California has developed an ingestible chip that can be embedded in pills and other pharmaceuticals.

Taking pills on a regular basis requires a lot of discipline or a really obsessive use of text alerts. Many modern medicines can’t do their job properly if they’re not taken at the correct time, in the correct dosages and in the correct manner. Unfortunately, over half of all patients don’t follow their prescriptions consistently.

Many patients, such as cancer sufferers, transplant recipients and those with HIV must take batteries of medicines that are hard to keep track of. For the elderly, failing memories make it just as difficult. They make errors or fall into bad habits and don’t get the full benefit of their pharmaceuticals. This is where Proteus Digital Health’s ingestible sensor comes in.

The sensor, called the Ingestion Event Marker (IEM), is a sensor chip that can be embedded in a pill and then swallowed by the patient. When the chip reaches the stomach, the stomach fluids start powering it and the chip sends out an ID signal complete with time stamp. This is picked up by a special patch worn by the patient. The patch notes the ID and time stamp, and wirelessly transmits this to a mobile phone application along with data collected directly by the patch such as heart rate, body position and activity.

This information can, with the patient’s consent, be shared with doctors and other caregivers to see if the medication has been taken in at the right time, place and manner and to help the patient develop healthier habits.

My sense of humor gets the better of me sometimes. All I can think is – our government figures we’ll swallow anything.

Prototype floating wind turbine affirms offshore wind potential


Windfloat prototype anchored off the coast of Agucadoura, Portugal

Floating wind farms could soon be powering thousands of European homes after a prototype seaborne turbine sailed through technological trials off the coast of Agucadoura, Portugal.

The 54-meter tall renewable structure sits atop a semi-submersible platform known as a WindFloat situated five kilometers from shore…It has been manufactured by WindPlus, a consortium of energy and clean-tech companies including Principle Power, Energias de Portugal and Vestas.

The group hopes their primary success will help secure European Union funding to add another five turbines alongside the existing model, engendering greater electrical production…

Unlike existing offshore wind farms and underwater tidal turbines, floating structures do not have to be permanently fixed to the ocean floor…Instead they are kept in place by a drag embedment anchor, much like the devices used to moor oil rigs in deep ocean environments.

This means WindFloat structures could theoretically be transported to any ocean location where there is a strong wind resource, says Alla Weinstein…

Weinstein highlights lower construction costs — the WindPlus turbine cost €20 million to build and install — as a major advantage the technology has over existing offshore wind farms.

The fact that turbines and their platforms can be assembled on land…means “the cost and risk profile … is significantly reduced,” she says.

But while bullish about the technology’s potential, Weinstein admits there remains a way to go before floating turbines become profitable enterprises.

The initial structure off the coast of Portugal is merely a pilot installation to prove the device works and is viable…

One of my favorite future means of producing electricity. Offshore is a great location – especially utilizing equipment like this which merely needs to be towed into position 12-18 miles at sea. Far enough to counter that whining sound that accompanies resistance from NIMBYs worldwide.

There ain’t about to be any shortage of offshore wind. Maintenance and durability are the only significant design questions. Given appropriate materials and corrosion-resistant coatings, production should extend well beyond payback time.

Tall, red and green: Housing scheme sells energy back to the grid

Look up this project on the website of its architects, ACXT, and you will find that it goes by the rather understated name of 242 Affordable Housing Units in Salburúa (Salburúa being a neighborhood in the Basque city of Vitoria-Gasteiz). In many ways the downplaying of the name is in keeping with ACXT’s quiet approaches to sustainable design. Though there may be no obvious green bells and whistles such as wind turbines or photovoltaics, passive architectural methods combined with on-site generation contribute to what ACXT claims is a “considerable reduction” in the building’s carbon dioxide emissions.

Though largely a residential development the building, completed in 2011, incorporates nine shops at ground level. From there, it’s social housing all the way up: between four and seven stories for the horseshoe-shaped block that forms the building’s footprint, rising to 21 stories for the tower that rises above one end of that horseshoe.

Why the variation in height in the main block of the building? It’s all to do with daylight, or specifically sunlight – the two being subtly different things. By limiting the height of the development to the south (we’re in the northern hemisphere, needless to say), more apartments are granted a direct view of the sun. It’s an arrangement the building appears to have borrowed from its closest neighbors, and though the tower, being located at the building’s south-western corner, inevitably casts a shadow, the photographs suggest that an impressive proportion of the building’s facades are bathed in sunlight at any given time. In any case, the positioning of the tower to the south inevitably means that more apartments are granted a south-facing aspect, and though direct sunlight can be problematic, it’s also a very nice thing to have – especially at home…

More central to the building’s sustainable efforts is the cogeneration system which produces 70 kW of electricity and 109 kW of heating on site. A relatively unglamorous technology, cogeneration…is nevertheless a tremendously important weapon in a building designer’s arsenal. In this case, effectively an on-site gas-fired power station…it’s the proximity of the power generation to end use that sees CHP offering significant energy savings over grid-scale gas fired power, because a vast amount of the heat generated as a by-product can be put to use very near to where it is generated. Plus it’s heat that doesn’t have to be generated by other means, as would otherwise be the case. In a triumph of localism, cogeneration can almost be seen as putting the fuel to work twice in one go.

ACXT reports that the building is able to produce electricity to sell back to the grid, which suggests that, for some of the time at least, the cogeneration system is producing more electricity than the building needs: a good thing.

Bravo! They don’t discuss it in the article; but, I imagine the plumbing and what HVAC there is – is all home run rather than traditional right angles and elbows. You can save about 30% of the energy required to push water and air around a multi-story building.

Iran’s fuel test won’t hasten nuclear weapons – bluster on both sides of the question is farce!


Bushehr nuclear power plant – loaded with Russian fuel rods

Iran’s latest claim of a breakthrough in its nuclear program appears unlikely to bring it any closer to having atomic bombs, but serves rather as another defiant message to the West…

“The development itself doesn’t put them any closer to producing weapons,” said Peter Crail of the Arms Control Association, a Washington-based research and advocacy group.

It could be a way of telling Tehran’s foes that time is running out if they want to revive an atomic fuel swap deal that collapsed two years ago but is still seen by some experts as offering the best chance to start building badly needed trust.

Not if the response from the Obama White House is any indicator.

Diplomats believe Iran has in the past overstated its nuclear progress to gain leverage in its standoff with Western capitals, and the testing of domestically made fuel does not mean the country is about to start using it to run reactors.

“It is a step in the direction of no longer needing supply from other countries,” said Associate Professor Matthew Bunn of Harvard University’s Kennedy School…But it will be a good number of months or years before it will be at the point where they no longer need supply from other countries…”

Continue reading

India begins living up to ambitious goals for solar power

Solar power is a clean energy source. But in this arid part of northwest India it can also be a dusty one.

Every five days or so, in a marriage of low and high tech, field hands with long-handled dust mops wipe down each of the 36,000 solar panels at a 63-acre installation operated by Azure Power. The site is one of the biggest examples of India’s ambitious plan to use solar energy to help modernize its notoriously underpowered national electricity grid, and reduce its dependence on coal-fired power plants.

Azure Power has a contract to provide solar-generated electricity to a state-government electric utility. Inderpreet Wadhwa, Azure’s chief executive, predicted that within a few years solar power would be competitive in price with India’s conventionally generated electricity…

Two years ago, Indian policy makers said that by the year 2020 they would drastically increase the nation’s use of solar power from virtually nothing to 20,000 megawatts — enough electricity to power the equivalent of 20 million modern American homes. Many analysts said it could not be done. But, now the doubters are taking back their words.

Dozens of developers like Azure, because of aggressive government subsidies and a large drop in the global price of solar panels, are covering India’s northwestern plains — including this village of 2,000 people — with gleaming solar panels. So far, India uses only about 140 megawatts, including 10 megawatts used by the Azure installation, which can provide enough power to serve a town of 50,000 people, according to the company. But analysts say that the national 20,000 megawatt goal is achievable and that India could reach those numbers even a few years before 2020.

Prices came down and suddenly things were possible that didn’t seem possible,” said Tobias Engelmeier, managing director of Bridge to India, a research and consulting firm based in New Delhi. Chinese manufacturers like Suntech Power and Yingli Green Energy helped drive the drop in solar panel costs. The firms increased production of the panels and cut costs this year by about 30 percent to 40 percent, to less than $1 a watt.

Developers of solar farms in India, however, have shown a preference for the more advanced, so-called thin-film solar cells offered by suppliers in the United States, Taiwan and Europe. The leading American provider to India is First Solar, based in Tempe, Ariz.

India does not have a large solar manufacturing industry, but is trying to develop one and China is showing a new interest in India’s growing demand. China’s Suntech Power sold the panels used at the Azure installation, which opened in June.

RTFA. Lots if info. I chuckle when folks writing articles like this include notes about government subsidies being necessary. I don’t recall a major power plant built anywhere in the world – coal-fired, nuclear, nat gas, whatever – in decades without government support. It ain’t exactly the kind of construction project done on spec.

China begins tests of 500kph train


The first test train that can reach speeds of up to 500 km an hour stands on a railway line in Qingdao

The six-carriage train with a tapered head is the newest member of the CRH series. It has a maximum drawing power of 22,800 kilowatts, compared with 9,600 kilowatts for the CRH380 trains now in service on the Beijing-Shanghai High-Speed Railway, which hold the world speed record of 300 km per hour.

The gray train, which has testing and data processing equipment on board, was designed and produced by CSR’s Sifang Locomotive & Rolling Stock Co…Ding Sansan, the company’s chief technician, said the concept of the super-speed train design was inspired by the ancient Chinese sword. The bodywork uses plastic material reinforced with carbon fiber…

The test train is based on revisions to the CRH 380A – regarding the shape of the front, body, engine and brake systems – intended to increase the speed, promote the engine power and decrease the drag force

Many high-tech materials, including carbon fiber, magnesium alloy and sound insulation materials, have been used in the train.

Shen Zhiyun, a locomotive expert and academician with both the Chinese academies of sciences and engineering, said the testing of the train will provide useful reference for current high-speed railway operations.

And that is as critical for the process of moving forward to faster, more efficient transport of people and goods. It’s logical that improvements may be needed to roadbeds and rail design, maintenance and upgrades. Whatever is needed for 500kph rail travel will make 300kph even safer.

There will be a predictable number of timorous political mice – who will whine about the danger of testing. You make it as safe a process as possible and then you get on with it. If engineers and designers spent their careers listening to 19th Century fearmongers we’d still be trying to breed faster horses for public transit.

Bill Gates’ firm Terrapower discuss nuclear reactor plan in China

China is set to start work on a novel design for a nuclear reactor with the help of a firm founded by Bill Gates.

Terrapower, founded and funded by the Microsoft chairman, is collaborating with Chinese scientists on the fourth generation (4G) reactor. Research into the 4G reactor over the next five years could top $1 billion, said Mr Gates. Developing such a reactor could take a long time because none have been built or tested yet.

“The idea is to be very low cost, very safe and generate very little waste,” said Mr Gates during a talk at China’s Ministry of Science and Technology during which he confirmed the tie-up with Terrapower…

Based in Washington state, Terrapower is working on a design for what is known as a travelling wave reactor. This uses depleted uranium as its power source and is believed to produce less nuclear waste than other designs.

All these new designs are going to be incredibly safe,” Mr Gates said. “They require no human action to remain safe at all times…”

I’ve supported nuclear power generation since I first worked in the field before most of my readers were born. Cripes, I never thought I’d get old enough to be able to say that. :)

Anyway, in recent years I have gradually begun to shift my alliance to large-scale solar power projects because I feel the ultimate cost of producing electrical power is now less for solar technology than nuclear power. The environmental problems associated with the latter methodology are problems of politics, corruption and laziness prompted by greed. Problems faced by all large-scale endeavors in the modern era.

If Gates’ company can beat the costs of competing with large and small-scale projects from advanced firms like Toshiba and Areva – well, then, more power to him.

Ionic liquid catalyst helps turn industrial emissions into fuel

An Illinois research team has succeeded in overcoming one major obstacle to a promising technology that simultaneously reduces atmospheric carbon dioxide and produces fuel.

Professor Paul Kenis and his research group joined forces with researchers at Dioxide Materials, a startup company, to produce a catalyst that improves artificial photosynthesis…Artificial photosynthesis is the process of converting carbon dioxide gas into useful carbon-based chemicals, most notably fuel or other compounds usually derived from petroleum, as an alternative to extracting them from biomass.

In plants, photosynthesis uses solar energy to convert carbon dioxide (CO2) and water to sugars and other hydrocarbons. Biofuels are refined from sugars extracted from crops such as corn. However, in artificial photosynthesis, an electrochemical cell uses energy from a solar collector or a wind turbine to convert CO2 to simple carbon fuels such as formic acid or methanol, which are further refined to make ethanol and other fuels.

“The key advantage is that there is no competition with the food supply,” said Richard Masel, a co-principal investigator of the paper and CEO of Dioxide Materials, “and it is a lot cheaper to transmit electricity than it is to ship biomass to a refinery.”

However, one big hurdle has kept artificial photosynthesis from vaulting into the mainstream: The first step to making fuel, turning carbon dioxide into carbon monoxide, is too energy intensive. It requires so much electricity to drive this first reaction that more energy is used to produce the fuel than can be stored in the fuel.

The Illinois group used a novel approach involving an ionic liquid to catalyze the reaction, greatly reducing the energy required to drive the process. The ionic liquids stabilize the intermediates in the reaction so that less electricity is needed to complete the conversion…

Next, the researchers hope to tackle the problem of throughput. To make their technology useful for commercial applications, they need to speed up the reaction and maximize conversion.

“More work is needed, but this research brings us a significant step closer to reducing our dependence on fossil fuels while simultaneously reducing CO2 emissions that are linked to unwanted climate change,” Kenis said.

Bravo!

Not the only researchers studying this sort of solution to problems causing climate change, industrial pollution negatively affecting air chemistry. But, this is one of the first I’ve seen that appears to have some success in qualitatively reducing the cost of the transformation of carbon dioxide into carbon monoxide.

Egypt and Ethiopia review collaboration on Nile river dam


Meles Zenawi and Essam Sharaf
Daylife/Reuters Pictures used by permission

Ethiopia and Egypt have agreed to review the impact of a planned $4.8 billion Nile river dam, which Addis Ababa announced in March, in a bid to open a “new chapter” in once-strained relations.

Ethiopian Prime Minister Meles Zenawi and his Egyptian counterpart, Essam Sharaf, made the announcement at a joint news conference following talks in Cairo on Saturday. “We have agreed to quickly establish a tripartite team of technical experts to review the impact of the dam that is being built in Ethiopia,” Zenawi said. Experts from Sudan will also be part of the team.

Sharaf said Ethiopia’s planned construction of the Grand Renaissance Dam “could be a source of benefit” – an apparent change in tone by Egypt’s new rulers on what has been a highly contentious issue.

We can make the issue of the Grand Renaissance Dam something useful,” Sharaf said. “This dam, in conjunction with the other dams, can be a path for development and construction between Ethiopia, Sudan and Egypt…”

Zenawi’s visit to Cairo was the first by an Ethiopian official since former Egyptian president Hosni Mubarak was ousted by a popular uprising in February…

The dam is planned for the Blue Nile river in northwestern Ethiopia, a few kilometres from the Ethiopia–Sudan border.

The dam is designed to have an installed capacity of 5250 MW, which is threefold of the 1885.8 MW installed capacity of the 12 currently operational hydro-power plants of the nation.

Bravo. It ain’t easy – it ain’t ever easy to negotiate treaties over natural resources especially water rights. Cripes, we’re still governed by water rights here in New Mexico that go back to Spanish colonial times. Technically, it’s against New Mexico law to collect rainwater after it falls from the skies — unless used by a farmer.

That these nations are willing to discuss and consider collaboration is a step forward.