Tagged: solar

Unintended consequences — DOE loan program is now profitable

The U.S. Department of Energy, led by Secretary Ernie Moniz, is trying to change how people perceive its loan program, which doled out over $30 billion in loans over the years, funding clean energy projects like huge solar panel farms, but also now-bankrupt solar startup Solyndra. Why? Because the Department has another $40 billion left to hand out in the program, and of course it wants that process to go as smoothly as possible.

Moniz and DOE officials said in interviews Thursday morning that the loan program is now starting to make a small profit ($30 million from interest payments), and eventually the program could bring in between $5 billion and $6 billion over 20 years.

Not that realities of government research and kickstarter programs are anything conservative pundits and politicians will ever admit to being useful.

The program wasn’t designed to make money, and it actually had $10 billion set aside to cover losses. The loss rate on the first $30 billion was only 2.28 percent, or $780 million, of which $535 million was for Solyndra, and some of the rest from Fisker. Abound Solar and Vehicle Production Group were also small losses. Now interest payments have covered all of those losses and brought it into the black…

For example, the DOE loan program funded a number of large solar panel farms that couldn’t get debt financing with its first $30 billion about five years ago, Moniz pointed out last month. But now that solar panel farm development has come down in price substantially, and private funding has become readily available, the private sector has taken over this type of investment and the DOE has moved on. This is the type of model that works for the DOE, said Moniz. But of course bringing newly commercial technologies to market can be risky…

With the…news that the original loan program is actually profitable, it will be interesting to hear from all those critics who used Solyndra as a political talking point, including in the last presidential election. Is the ghost of Solyndra finally dead? If the money’s been covered by interest payments, it seems as if it should be.

I think Katie Fehrenbacher has a cynical streak in her DNA at least as persistent as mine. After all, she earns her living writing about cleantech, clean energy and the struggle to develop national policy based on science and humanity. None of which are topics of interest to Republicans, Blue Dog Democrats or the sort of cretin who hasn’t embraced a new economic or social idea since the designated hitter was allowed in half of baseball.

But, I appreciate her optimism. Even if it presumes courage and understanding I consider scarce.

About these ads

Life on Eigg

Click to enlargeReuters/Paul Hackett

The Island of Eigg, located about ten miles off the Scottish mainland, is made somewhat famous by its rich and varied wildlife, beautiful scenery and its residents’ attempts to become self sufficient.

It has the first completely wind, water and sun-powered electricity grid in the world, according to the Isle of Eigg Heritage Trust.

The island’s climatic conditions allow it to generate power from hydroelectric generators, wind turbines and photovoltaic panels.

Between 85 and 95 percent of the energy it consumes comes from renewable resources, according to locals.

Before the switch to renewables, the island relied on diesel generators for power. Locals described them as noisy, inconsistent and said there used to be a lot of scrambling around in the dark.

Conditions only improved on the island when the community took control over its assets in a 1997 buyout.

With the financial support of various trusts, a milestone was reached in 2008, when Eigg Electric provided 24-hour power for the first time.

Click through to the article. There is a delightful slide show illustrating the changes built by the islanders.

It speaks well of the advocacy for crofters having the right to buyout their land, townships and [sometimes] whole islands – so that beautiful, historically-important garden spots like Eigg now have the independence and support to rebuild their island into energy self-sufficiency. The Community Land Unit was for many the seed planted which grew into a new and proper life for places like Eigg.

Strictly on a personal note, I believe Brian Wilson, former Labour MP and Minister deserves credit for the groundwork for ventures like this one. The West Highland Free Press established a baseline for economic and cultural freedom unmatched by UK Establishment politicians. His persona is strong-willed enough to offend as many folk as he pleases; so, I defer to folks’ personal experiences.

Thanks, Mike — great minds and etc.

China’s Xinjiang bursting with an excess of green energy

Click to enlarge

Xinjiang Uygur Autonomous Region, a major power supplier in China, has accelerated the development of green energy as it recorded higher installed capacity in 2013.

Statistics with the Xinjiang branch of the State Grid Corporation of China (SGCC) showed that by 2013, the combined installed capacity of wind power, hydropower and solar power stations exceeded 1,368 million KW, accounting for about one third of all installed capacity in Xinjiang….

A project to connect the Xinjiang power grid to the northwest China grid was launched in 2010 to transmit Xinjiang’s redundant electric power to other parts of the country. The money made from this is used for developing Xinjiang.

The SGCC Xinjiang branch has put an average annual investment of 500 million yuan towards green energy projects.

Total installed capacity is expected to reach 6,048 million KW by the end of 2014, and that of green power will exceed 2,200 million KW.

While this wee post may seem a bit foreign to many of my readers you have to understand I live in a part of the United States with many parallels to Xinjiang.

Aside from some historic political differences, the natural landscape is often similar. As is the potential. It’s been 20 or 30 years since the New Mexico state engineer’s office determined we had sufficient resources to be a net exporter of wind-generated electricity. We are equally capable of filling state needs and then exporting solar-generated electricity.

The technology for each of these alternatives has improved and become more cost effective over the decades – while the state, local power utilities and the federal government have accomplished little more than a sampling of what might be if they were as serious about non-polluting power generation as they all are about the crap coal mined and burned in the Four Corners.

NASA Iris satellite shows sun in amazing detail

The region located between the surface of the sun and its atmosphere has been revealed as a more violent place than previously understood, according to images and data from NASA’s newest solar observatory, the Interface Region Imaging Spectrograph, or IRIS.

Solar observatories look at the sun in layers. By capturing light emitted by atoms of different temperatures, they can focus in on different heights above the sun’s surface extending well out into the solar atmosphere, the corona. On June 27, 2013, IRIS, was launched, to study what’s known as the interface region – a layer between the sun’s surface and corona that previously was not well observed.

Over its first six months, IRIS has thrilled scientists with detailed images of the interface region, finding even more turbulence and complexity than expected. IRIS scientists presented the mission’s early observations at a press conference at the Fall American Geophysical Union meeting on Dec. 9, 2013.

The quality of images and spectra we are receiving from IRIS is amazing,” said Alan Title, IRIS principal investigator at Lockheed Martin in Palo Alto, Calif. “And we’re getting this kind of quality from a smaller, less expensive mission, which took only 44 months to build.”

Click through the link [above] and discover details, photos and a snazzy video. Enjoy!

Prize-winning Shed of the Year

Gizmag sends out its heartfelt congratulations to Alex Holland, winner of this year’s coveted Shed of the Year award for his solar-powered nautically-themed shed built almost entirely from salvaged materials. The crowning glory is a 14-ft boat which has been left whole and inverted to form the roof. A 20-W solar panel powers the creature comforts inside.

To create the shed’s frame, the boat was fixed atop four telegraph poles plonked judiciously on a hillside amid Wales’ Cambrian Mountains. (The views aren’t at all bad, either). Aluminum-framed windows were salvaged from a 1940s caravan, and others were “borrowed” from Holland’s farmhouse. Walls are a mixture of corrugated metal and, for a taste of the Neolithic, wattle and daub.

Inside things take a turn for the high tech. The shed’s PV panel feeds a battery which provides power to LED lighting and a 12-V sound system – the only new item in the construction. The shed also boasts a plumbed Belfast sink (the generous, cuboid-shaped ones), and a 19th century wood burning stove for heat fitted with a chimney fashioned from the queen pole of an old circus big top.

Where sheds end and (sometimes pretentious) “micro-dwellings” begin is anyone’s guess, but it’s refreshing to come across a modestly-sized building designed for purposes other than commenting on the inherent tension between built and natural environments or seeking to blur the boundary between the indoors and the outdoors. Holland’s motive? “We have discovered that the shed is an ideal space for middle aged women to get drunk and dance wildly under the stars and we intend to pursue this policy!” he writes, at Readersheds.co.uk. “It is also an ideal place for me to sit whilst our 3 dogs run around our field exercising themselves.”

Best part: What Mr. Holland intends next -

Holland intends to spend the £1,000 winnings (more than twice the cost of building the shed) on a wind turbine “to give me enough electricity to make ice in the fridge for gin and tonics, and to ensure the cider and beers are always chilled.”

Oil-rich Kazakhstan joins the Green Revolution

Locally manufactured wind generator in Pavlodar, Kazakhstan

Oil-rich Kazakhstan will spend 1 percent of annual output every year until 2050 to increase power generation from greener sources, a senior official said, cutting its dependence on coal far faster than some of the world’s big polluters.

The Central Asian country, the world’s ninth largest by area but populated by just 17 million people, holds about 3 percent of the global recoverable oil reserves. However, its fast, oil-propelled growth hinges on high oil prices.

President Nursultan Nazarbayev, a former steelworker who has ruled for more than two decades, has signed off on a state program on developing sources of renewable energy.

“According to our estimates, total investments – state and private – needed to implement this program will amount annually to an average of $3.2 billion in the period until 2050, or roughly 1 percent of GDP,” Environmental Protection Minister Nurlan Kapparov told a news briefing…

This is not such a high price for the clean air, for the health of our children and the preservation of ecological systems, as well as for our economy’s resilience to external shocks which assume more threatening proportions each year.”

Coal-fired power stations, which heavily pollute the atmosphere, currently account for around 80 percent of Kazakhstan’s electricity generation.

Kapparov said, provided domestic natural gas prices were high, Kazakhstan’s “energy basket” by 2030 would be made up of 11 percent generated by wind and the sun, 8 percent by nuclear power, 10 percent by hydro power, 21 percent by gas and 49 percent by coal…

The “green revolution” can add annually up to 3 percent of GDP to Kazakhstan’s current economic growth in the period until 2050, Kapparov said, and create up to 600,000 new jobs.

Looking forward is rarely part of the skill set of politicians. That seems to be a global character trait – with a few exceptions.

It’s always good news for the rest of the planet, as well, when a small, unique portion of the world’s economic machinery decides to include sensible environmental goals into their planning.

In the United States, we’d be improving the odds if we even considered planning.

Liquid Robotics shows next-gen Wave Glider sea-going robot

Barbara Block, Stanford University – using SV2, Plans for SV3

Last December, Liquid Robotics made headlines when one of its Wave Glider aquatic robots completed a “swim” from San Francisco to Australia. It marked the longest distance ever traveled by an autonomous vehicle of any type. The research/surveillance robot was part of a fleet of four that took part in the demo project. One of the others successfully reached Australia later, while the other pair are still on their way to their alternate destination of Japan.

Besides making the much-publicized PacX trans-Pacific crossing, the company’s “base” model of the Wave Glider (the new version of which is now known as the SV2) has been used by a variety of clients in a number of different projects, since its launch in 2009. “We’ve built over 200,” Liquid Robotics CEO Bill Vass told us. “About a third or so are on missions at any one time. A lot more customers are moving to running 20 at a time instead of one at a time…”

Monday, the company announced its SV3 – the new-and-improved version of the existing Wave Glider robot. Like the SV2, the SV3 consists of two main parts that are tethered together.

On the surface is a floating surfboard-like “boat,” that contains the sensors which allow the robot to measure oceanographic data such as salinity, water temperature, wave characteristics, weather conditions, water fluorescence, and dissolved oxygen. Also on board are a GPS unit, a heading sensor, transmitters/receivers and other electronics – all of which are powered by built-in solar cells. Below the surface is a winged platform that catches the underwater motion of the waves, allowing it to paddle itself forward, along with the tethered boat…

More intriguingly, however, the SV3 additionally features a thrust-vectoring electric motor. Its propeller folds out of the way when not in use, but can be lowered and activated (either autonomously or by satellite remote control) when the robot needs an extra push – such a push might be helpful if it encounters doldrums or cross currents, or if a sudden change in its route is required. The motor is powered by a battery that is in turn charged by the solar cells, as with the other electric components.


Solving the problems of autonomous function and durability are the hard bit. Hardware, that is. One of the smartest things they’ve done in the software is designing in a system that can diagnosis a problem that may hinder mission completion – whereupon the Wave Glider changes course and heads for the nearest repair facility. Phoning home about the problem, of course.

Solar filament ejection

Click on photo to enlarge

A solar filament erupts.

What’s happened to our Sun? Nothing very unusual — it just threw a filament. At the end of last month, a long standing solar filament suddenly erupted into space producing an energetic Coronal Mass Ejection (CME). The filament had been held up for days by the Sun’s ever changing magnetic field and the timing of the eruption was unexpected.

Watched closely by the Sun-orbiting Solar Dynamics Observatory, the resulting explosion shot electrons and ions into the Solar System, some of which arrived at Earth three days later and impacted Earth’s magnetosphere, causing visible aurorae. Loops of plasma surrounding an active region can be seen above the erupting filament in the ultraviolet image.

If you missed this auroral display please do not despair — over the next two years our Sun will be experiencing a solar maximum of activity which promises to produce more CMEs that induce more Earthly auroras.

Thanks, Ursarodinia

Solar Roadways gets grant to build prototype solar parking lot

What do you need to generate a lot of electricity from photoelectric solar cells? A lot of surface area. What is a lot of the surface of the United States covered in? Roads. Put those two ideas together, and the idea of turning the nation’s highways into solar farms doesn’t sound too odd, does it? Well, maybe it doesn’t until you consider that you’re talking about taking electronics – electronics that are typically somewhat delicate and rather expensive – and purposely putting them on the ground where heavy vehicles will zoom over them at high speed…

Replacing crushed stone and tar with LEDs and capacitors seems so unlikely that when Solar Roadways was awarded $100,000 to construct a small, 12′ by 12′ prototype system in 2009, infrastructure blog The Infrastructionist gave the effort its “Dubious Green Scheme” award and labeled Solar Roadways not just “harebrained” but “totally batshit crazy.”

As it turns out, that initial panel impressed the Department of Transportation enough that Solar Roadways has now been given $750,000 to take it to the next step: a solar parking lot. Constructed out of multiple 12′ x 12′ panels, the smart parking lot will do more than the asphalt alternative. It will warm itself in cold weather to melt away snow and ice. A layer of embedded LEDs can be used create traffic warnings or crosswalks. Electricity leftover from those tasks could be used to charge electric vehicles or routed into the power grid. The electrical components will be embedded between layers of hardened, textured glass – this may sound fragile, but is already tough enough that some areas use the material for sidewalks.

Parking lots, driveways, and eventually highways are all targets for the panels. If the nation’s system of interstate highways was surfaced with Solar Roadways panels, the results would be more than three times the amount of electricity currently consumed. Of course, at $100,000 per 12′, costs would need to come down significant bit before that could happen.

Obviously, the editors never compared the cost of building solar roadways to typical American highway boondoggles. The record is held by a project near and dear to my heart – Boston’s Big Dig. A three-and-a-half mile tunnel that ended up costing over $14 billion.

Plus he’s extrapolating from the first 12′ x 12′ panel. The parking lot project will reduce square foot cost as will further ramping up towards capacity production. All of which he doubtless knows. :)

Norway to build northernmost green energy building in the world

Hydro’s energy-neutral test center in Ulm, Germany

A planned building in Norway will be at the most northern location so far to generate more energy than it uses, demonstrating that “green” buildings can work anywhere…

A group including Norwegian aluminum maker Norsk Hydro and Swedish construction group Skanska said it would construct the six-to-seven-story building in Trondheim, with offices and shops covering up to 9,000 sq meters.

The building will use solar panels and sunscreens on an aluminum facade, which will have a new energy-saving ventilation system. It will also draw on geo-thermal energy and use other technologies such as heat pumps.

Over the year, it will generate more power than it consumes.

“This will be the world’s most northerly ‘energy-positive’ building,” Hydro Chief Executive Svein Richard Brandtzaeg told Reuters in a telephone interview of the project, due for completion in 2013.

If we can do it here, we can do it anywhere,” he said, adding that there were global business opportunities for Hydro in clean energy for buildings that usually emit greenhouse gases from burning fossil fuels for heat, light and air-conditioning.

Trondheim, about 300 km south of the Arctic Circle, is on the same latitude as southern Greenland, Alaska and Siberia…

He said that Hydro had helped build an office block for Vodafone Group in Milan for 3,000 people, in which the facade cost 16 percent more than a conventional building but helped halve energy consumption.

“It cost 16 percent more, but the payback time is less than two years,” due to energy savings, he said.

Most folks who hope to ignore efficiencies in alternative energy source try just as hard to block out the fact that these are energy sources which are becoming more efficient and less expensive over time. This is particularly true of solar-generation models which continue to diminish in cost as engineering and scientific advancement accumulate.