How genes jump from crop to crop – a new model

Bees do it, humans do it – move genes among crop plants, that is. But until now, researchers and growers had a hard time getting a grip on the factors that determine how much of this gene flow happens in an agricultural landscape.

A new data-driven statistical model that incorporates the surrounding landscape in unprecedented detail describes the transfer of an inserted bacterial gene via pollen and seed dispersal in cotton plants more accurately than previously available methods…

The transfer of genes from genetically modified crop plants is a hotly debated issue. Many consumers are concerned about the possibility of genetic material from transgenic plants mixing with non-transgenic plants on nearby fields. Producers, on the other side, have a strong interest in knowing whether the varieties they are growing are free from unwanted genetic traits.

Up until now, realistic models were lacking that could help growers and legislators assess and predict gene flow between genetically modified and non-genetically modified crops with satisfactory detail.

This study is the first to analyze gene flow of a genetically modified trait at such a comprehensive level. The new approach is likely to improve assessment of the transfer of genes between plants other than cotton as well.

“The most important finding was that gene flow in an agricultural landscape is complex and influenced by many factors that previous field studies have not measured,” said Heuberger. “Our goal was to put a tool in the hands of growers, managers and legislators that allows them to realistically assess the factors that affect gene flow rates and then be able to extrapolate from that and decide how they can manage gene flow.”

The researchers measured many factors in the field and developed a geographic information system-based analysis that takes into account the whole landscape surrounding a field to evaluate how it influences the transfer of genes between fields. Genes can be transferred in several ways, for example by pollinators such as bees, or through accidental seed mixing during farming operations.

Surprisingly, the team found that pollinating insects, widely believed to be the key factor in moving transgenic pollen into neighboring crop fields, had a small impact on gene flow compared to human farming activity, with less than one percent of seeds collected around the edges of non-Bt cotton fields resulting from bee pollination between Bt and non-Bt cotton…

Shannon Heuberger and her co-workers broadened the scope to include flower-pollinating bees, humans moving seeds around and the area of all cotton fields in a three-kilometer (1.9 mile) radius. This approach turned out to be more powerful in understanding the effect of surrounding fields than using the customary model based solely on distance…

Heuberger’s findings have implications not just for genetically engineered traits but also more generally for seed production.

“When you grow a crop and want the variety to be pure, just being able to know how far gene flow will occur and how it is affected by pollinators and human farming activity in the area is very valuable.”

An scientific study published for peer review instead of apocrypha. I wonder if the Frankenfood worry warts will adopt this methodology? After all, it might prove more persuasive than subjective tales of the world being taken over by red pill genes.

By the same token, transgenic researchers will now have a more comprehensive model for tracking gene flow – especially if, as they may, dedicate more effort to gene transplants which include a broader range of geographic modifiers.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.