Street vendor/thief accidentally saves baby from suffocation

A street vendor who stole a bag from a local train in India accidentally saved the life of a baby boy concealed inside, investigators say.

Kishor Kale, 20, left the train Monday with the bag in Kurla, a Mumbai suburb, the newspaper MiD Day, reported Tuesday. He opened the bag at the station, hoping to find cash or valuables, and instead a tiny hand poked out.

Kale tried to dump the bag and baby on the platform but was caught by an alert ticket seller. He told police he was hawking nail polish on the train when he spotted the bag on the floor.

Police said the baby is only about 15 days old. While he is in good health, he would probably have suffocated if he had remained in the bag 10 minutes longer.

Jitendra Rathod, a senior officer with the Government Railway Police in Wadala, said investigators are examining security camera footage to verify Kurla’s story of how he came by the bag and to find out who dumped it and the baby.

Phew! Hope his story is verified. Otherwise this dude is up the proverbial body of water without a means of locomotion.

The size of the chemical blitz bees face in fields


Not-so-mellow-yellowOwen Humphreys/PA

Perhaps I was naive, but when I discovered the extent of the chemical soup applied to typical fields I was astonished. As part of our ongoing investigations into the impact of pesticides on bees, we looked at 25 fields containing winter rapeseed or winter wheat during the 2012-13 growing season. For any particular field, the list of pesticides applied is worryingly long.

These are perfectly normal farms; not especially intensive, situated on the edge of the South Downs in East Sussex, an area of gentle hills, hedgerows and wooded valleys. Beautiful, rural England – Constable would have liked it here. But let’s look at it with a bee’s perspective rather than a painter’s eye.

Let’s look at one fairly typical field. The rapeseed crop, whose flowers the bees will feed on in season, is sown in late summer with a seed dressing containing the insecticide thiamethoxam. This is a systemic neonicotinoid, with exceedingly high toxicity to bees. Taken up into the plant, detectable levels will be in the nectar and pollen the bees gather.

In November, despite the protection supposedly offered by the neonicotinoid seed dressing the crop is sprayed with another insecticide, the endearingly named Gandalf. What harm could the wise old wizard possibly do? Gandalf contains beta-cyfluthrin, a pyrethroid. Pyrethroids are highly toxic to bees and other insects – killing insects is their job, after all – but as there should be no bees about in November that shouldn’t be a problem.

The following May, while flowering, the crop is sprayed with another pyrethroid, alpha-cypermethrin. Only weeks later the crop is blitzed with three more pyrethroids just for good measure – a real belt-and-braces approach. Why use one when three will do? The crop is still flowering at this point (it was a late year), and will be crawling with foraging bumblebees, hoverflies and other pollinators.

Between winter and summer, the crop is also treated with a barrage of herbicides, fungicides, molluscicides and fertilisers – 22 different chemicals in total. Most may have little toxicity to bees in themselves, but some, such as a group of fungicides (demethylation inhibiting or DMI fungicides), are known to interact with both neonicotinoids and pyrethroids, increasing their toxicity to bees.

So, when the fungicide prothioconazole is added to the mix tank that includes the year’s final application of chemicals, any feeding bee will be simultaneously exposed to a barrage of three pyrethroids, the thiamethoxam from the seed casing now in the nectar and pollen, and a fungicide that amplifies the toxicity of all these chemicals.

While farmers, agrochemical companies and food distributors say they haven’t a clue why bees are dying off at extinction levels.

Hogwash!

How an accidental magma strike was harnessed to heat homes


One of the “ordinary” geothermal power plants

Can enormous heat deep in the earth be harnessed to provide energy for us on the surface? A promising report from a geothermal borehole project that accidentally struck magma – the same fiery, molten rock that spews from volcanoes – suggests it could.

The Icelandic Deep Drilling Project, IDDP, has been drilling shafts up to 5km deep in an attempt to harness the heat in the volcanic bedrock far below the surface of Iceland.

But in 2009 their borehole at Krafla, northeast Iceland, reached only 2,100m deep before unexpectedly striking a pocket of magma intruding into the Earth’s upper crust from below, at searing temperatures of 900-1000°C.

This borehole, IDDP-1, was the first in a series of wells drilled by the IDDP in Iceland looking for usable geothermal resources. The special report in this month’s Geothermics journal details the engineering feats and scientific results that came from the decision not to the plug the hole with concrete, as in a previous case in Hawaii in 2007, but instead attempt to harness the incredible geothermal heat…

…cementing a steel casing into the well, leaving a perforated section at the bottom closest to the magma. Heat was allowed to slowly build in the borehole, and eventually superheated steam flowed up through the well for the next two years…

The well funnelled superheated, high-pressure steam for months at temperatures of over 450°C – a world record. In comparison, geothermal resources in the UK rarely reach higher than around 60-80°C.

The magma-heated steam was measured to be capable of generating 36MW of electrical power. While relatively modest compared to a typical 660MW coal-fired power station, this is considerably more than the 1-3MW of an average wind turbine, and more than half of the Krafla plant’s current 60MW output.

Most importantly it demonstrated that it could be done. “Essentially, IDDP-1 is the world’s first magma-enhanced geothermal system, the first to supply heat directly from molten magma,” Elders said. The borehole was being set up to deliver steam directly into the Krafla power plant when a valve failed which required the borehole to be stoppered. Elders added that although the borehole had to plugged, the aim is to repair it or drill another well nearby.

Bravo! None of this response was as placid as it may sound written up for scientific journals. The facility faced the danger of eruption and fire throughout the experiment. Staff and scientists demonstrated their resourcefulness, resolving questions on the fly.