The Fore people, a once-isolated tribe in eastern Papua New Guinea, had a long-standing tradition of mortuary feasts — eating the dead from their own community at funerals. Men consumed the flesh of their deceased relatives, while women and children ate the brain. It was an expression of respect for the lost loved ones, but the practice wreaked havoc on the communities they left behind. That’s because a deadly molecule that lives in brains was spreading to the women who ate them, causing a horrible degenerative illness called “kuru” that at one point killed 2 percent of the population each year.
The practice was outlawed in the 1950s, and the kuru epidemic began to recede. But in its wake it left a curious and irreversible mark on the Fore, one that has implications far beyond Papua New Guinea: After years of eating brains, some Fore have developed a genetic resistance to the molecule that causes several fatal brain diseases, including kuru, mad cow disease and some cases of dementia.
The single, protective gene is identified in a study published…in the journal Nature. Researchers say the finding is a huge step toward understanding these diseases and other degenerative brain problems, including Alzheimer’s and Parkinson’s.
The gene works by protecting people against prions, a strange and sometimes deadly kind of protein. Though prions are naturally manufactured in all mammals, they can be deformed in a way that makes them turn on the body that made them, acting like a virus and attacking tissue. The deformed prion is even capable of infecting the prions that surround it, reshaping them to mimic its structure and its malicious ways…
The study by Collinge and his colleagues offers a critical insight into ways that humans might be protected from the still-little-understood prions. They found it by examining the genetic code of those families at the center of the Fore’s kuru epidemic, people who they knew had been exposed to the disease at multiple feasts, who seemed to have escaped unscathed.
When the researchers looked at the part of the genome that encodes prion-manufacturing proteins, they found something completely unprecedented. Where humans and every other vertebrate animal in the world have an amino acid called glycine, the resistant Fore had a different amino acid, valine…
When the scientists re-created the genetic types observed in humans — giving the mice both the normal protein and the variant in roughly equal amounts — the mice were completely resistant to kuru and to CJD. But when they looked at a second group of mice that had been genetically modified to produce only the variant protein, giving them even stronger protection, the mice were resistant to every prion strain they tested — 18 in all.
“This is a striking example of Darwinian evolution in humans, the epidemic of prion disease selecting a single genetic change that provided complete protection against an invariably fatal dementia,” Collinge told Reuters…
Unintended consequences – one of the best reasons in science for basic research.
Fortunately, for our economy, beaucoup CEOs recognize the importance of that process. Unfortunately, for our economy, damned few of the hacks holding elected office recognize the importance of that process.