Asteroid impact simulation ends with a new hole in Europe

An international exercise to simulate an asteroid striking Earth has come to an end. With just six days to go before a fictitious impact, things don’t look good for a 298 km-wide region between Prague and Munich…

This may sound like a grim role-playing game, but it’s very serious business. Led by NASA’s Jet Propulsion Laboratory’s Centre for Near Earth Object Studies, the asteroid impact simulation is meant to prepare scientists, planners, and key decision makers for the real thing, should it ever occur…

…A key takeaway from this year’s simulation was the dramatic way in which key variables, such as the probable impact area and affected population size, were affected by new observations. At one point, for example, North Africa, the UK, and much of Scandinavia were inside the possible strike zone…

Previous tabletop exercises provided many years of warning time, but not this one. Accordingly, the focus of exercise was geared toward the disaster response and the importance of identifying dangerous asteroids in advance.

RTFA. Be prepared! Even if the only response possible in real time is RUN LIKE HELL!

Sandia experiments suggest sunny skies ahead for fusion reactors


Sandia’s Z-Accelerator in action

In the beginning, there was the thermonuclear bomb – mankind had harnessed the energy of the Sun. Confident predictions abounded that fusion reactors would be providing power “too cheap to meter” within ten years. Sixty years later many observers are beginning to wonder if billions of dollars of effort has been lost in digging out dry wells. Now a new simulation study carried out at Sandia National Laboratories in Albuquerque, New Mexico, suggests that magnetized inertial fusion (MIF) experiments could be retrofitted to existing pulsed-power facilities to obtain fusion break-even…

The magnetized inertial fusion method works like this. A sample of mixed deuterium-tritium gas is placed in a small conducting cylindrical target. The target is placed in an extremely strong axial magnetic field (typically tens of Tesla in intensity). A pulsed laser is used to heat the sample gas, following which the cylinder is subjected to rapid radial compression, either by an imploding laser pulse or by an extremely strong current. Fusion follows…

Sandia National Laboratories’ Z-accelerator (Z for short) is an ideal platform upon which to test out magnetized inertial fusion. Designed as an intense X-ray source for testing nuclear weapon components, Z can deliver an electrical pulse with a sizable fraction of a petawatt of power for a duration of a tenth of a microsecond to a region about the size of your little finger. The axial magnetic field for the MIF experiment is supplied by a pair of coils energized just prior to the experiment by a 2.2 megajoule capacitor bank, supplying a field of about 10 Tesla. After heating the sample gas with an external laser pulse, the Z is discharged across the cylinder.

Such tests are currently being prepared. Sandia’s simulation of the soon-to-be-carried out tests were intended to discover if the likely enhancement of fusion reaction rate was likely to be a small effect or a large effect (previous analysis had suggested a small effect was more likely). To their surprise, they found that in a situation where the cylinder was compressed by 60 mega-amperes of current, the process yielded about 100 times break-even performance. Increasing the current to 70 mega-amperes produced 1000 times break-even – a level at which the ratio between power taken from the power grid to run the apparatus would be less than the power returned to the power grid – in excess of true break-even performance.

Sandia researchers are preparing experimental tests of the MIF technique. They will begin at smaller compression currents, as the Z can only deliver 26 mega-amperes with which to compress the cylinder. However, we continue to hope for encouraging results ahead.

As does anyone who hopes that future generations of Earthlings will grow and prosper in an unpolluted atmosphere – perhaps with boundless electrical energy at hand to provide a motive force for a global economy.

OTOH, our politicians may heed sufficient contributions from Big Oil and Big Coal and suddenly discover no pressing motivation to continue these experiments at all.

Since someone always mentions the possibility of an “oops” moment, I, too, rely on the safeguards designed into these experiments by Sandia scientists. If they screw up, I’ll probably be vaporized in the first nanosecond, anyway. 60 miles away.